Godtyckliga tal

AlefWiki
Version från den 30 januari 2009 kl. 20.13 av Eric (diskussion | bidrag)
Hoppa till navigering Hoppa till sök

Mängden av godtyckliga tal betecknas G. Notera att godtyckliga tal inte nödvändigtvis är reella, eller ens komplexa. Exempel på godtyckliga heltal är 2 och 42. Notera att även (5^6)! är godtyckligt. Det är dessutom 17 sidor långt.

Det är ännu inte avgjort om samtliga reella tal är godtyckliga. Det finns ett enkelt sätt att generera godtyckligt många godtyckliga tal: Man väljer dem godtyckligt ett efter ett. Denna algoritm genererar emellertid inte samtliga godtyckliga tal.

Alla godtyckliga tal är inte lika godtyckliga. På mängden av godtyckliga tal definierar vi relationen "x är godtyckligare än y". Detta betecknar vi x~y.

Relationen ~ är inte reflexiv, eftersom inget tal är godtyckligare än sig självt. Därför utläses ibland ~ som strikt godtyckligare.

Relationen ~ är inte symmetrisk, eftersom x inte kan vara godtyckligare än y om y är godtyckligare än x.

Relationen ~ är transitiv: Antag att x är godtyckligare än y och att y är godtyckligare än z. Då gäller naturligtvis att x är godtyckligare än z.

Man kan definiera en godtycklighetsfunktion g från G till R, som för varje godtyckligt tal anger dess grad av godtycklighet. För funktionen skall gälla att g(x)>g(y) medför att x~y. Någon standardiserad godtycklighetsfunktion har ännu ej definierats.