Skillnad mellan versioner av "Matris"
Eric (diskussion | bidrag) m |
Schreib (diskussion | bidrag) m |
||
Rad 5: | Rad 5: | ||
== Exempelmatriser == | == Exempelmatriser == | ||
− | *<math>\displaystyle \left( {\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ \end{array} } \right)</math> - också känt som en ''identitetmatris''. Identitetsmatriser uppstår bland annnat ibland när man [[gausseliminering|gausseliminerar]]. | + | *<math>\displaystyle \left( {\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ \end{array} } \right)</math> - också känt som en ''identitetmatris''. Identitetsmatriser uppstår bland annnat ibland när man [[gausseliminering|gausseliminerar]]. |
*[[Bild:Funnymatrix.png]] - [http://www.youtube.com/watch?v=fuhTtIYm2OI en matris med ett Z, en 4, ett Q, ett till Q, ett tredje Q, och en Batman-symbol.] | *[[Bild:Funnymatrix.png]] - [http://www.youtube.com/watch?v=fuhTtIYm2OI en matris med ett Z, en 4, ett Q, ett till Q, ett tredje Q, och en Batman-symbol.] |
Versionen från 14 maj 2011 kl. 06.58
En matris är en rektangulär anordning av tal eller andra element. De kan också ses som en representation av en ändlig följd, där man har valt att dela upp följdens [math]\displaystyle n[/math] element i [math]x \cdot y = n[/math] element i den motsvarande matrisen.
Matrismultiplikation är när man multiplicerar två matriser. Tyvärr är det lätt att glömma och göra fel när man multiplicerar två matriser, och matriser är bland annat kända för att vara ett av matematikens största källor till aritmetiska fel.
Exempelmatriser
- [math]\displaystyle \left( {\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ \end{array} } \right)[/math] - också känt som en identitetmatris. Identitetsmatriser uppstår bland annnat ibland när man gausseliminerar.
- [math]\displaystyle \left( {\begin{array}{ccccccccccccccccc} 497 & -262 & -484 & 463 & -269 & 149 & -381 & -433 & 40 & -340 & 467 & -99 & -90 & 12 & 470 & 394 & -351 \\ -489 & -230 & 7 & -6 & -100 & -305 & -344 & -184 & -414 & -48 & 331 & -365 & -55 & 494 & 123 & 236 & -59 \\ 368 & 116 & -261 & 447 & 399 & -414 & -423 & 330 & 310 & 331 & -124 & 231 & -330 & 293 & -71 & -66 & 15 \\ 357 & 387 & 18 & 347 & 421 & 241 & -289 & -339 & 9 & -346 & -238 & 359 & -33 & 458 & 93 & -183 & 400 \\ 22 & -75 & 141 & 191 & 77 & 122 & -386 & 21 & -402 & -301 & 153 & -217 & 349 & 468 & 204 & -275 & 377 \\ 101 & -412 & 31 & -272 & 112 & 155 & -2 & 199 & -50 & -75 & 20 & 150 & -314 & 91 & -191 & 376 & 307 \\ 81 & 59 & -160 & -239 & 490 & 97 & 407 & 348 & -381 & 20 & -446 & -67 & -99 & 306 & -33 & 291 & 140 \\ -71 & -288 & -79 & 252 & -43 & 409 & 41 & 92 & 366 & -380 & -387 & 418 & 145 & -20 & 13 & -378 & 264 \\ 310 & 162 & -133 & 409 & 299 & 86 & -416 & -480 & -294 & 158 & -28 & 42 & -166 & 294 & 24 & 479 & 269 \\ 495 & 62 & -174 & 185 & 87 & 375 & 17 & 208 & 357 & 491 & -252 & -257 & 343 & 73 & 380 & -485 & 202 \\ 391 & -175 & -329 & -347 & -93 & -481 & 194 & -293 & -337 & 22 & -242 & 219 & 219 & -307 & 43 & 469 & -19 \\ -349 & -198 & -492 & -149 & 1 & 438 & 2 & -47 & 367 & 404 & -228 & 214 & -310 & -133 & 228 & 265 & 390 \\ -490 & 149 & 17 & -282 & 223 & -90 & 194 & -187 & -202 & 430 & -421 & -376 & 335 & 416 & -157 & -182 & -159 \\ -181 & -252 & -421 & -382 & 289 & 33 & -146 & -480 & 466 & 489 & 222 & 234 & 252 & -355 & -300 & 277 & 1 \\ 102 & 359 & -125 & 230 & 63 & -255 & -162 & 403 & 474 & -278 & -405 & 147 & -282 & 388 & -119 & 122 & 470 \\ 114 & -288 & -162 & 157 & 397 & 150 & 179 & 270 & -340 & -220 & 239 & 344 & 335 & 0 & 439 & 349 & 416 \\ -340 & 156 & -284 & 71 & 227 & 438 & -235 & -415 & -156 & 323 & -22 & 316 & 343 & 3 & -379 & -38 & 420 \\ 251 & -117 & 167 & -333 & -251 & 152 & 128 & -219 & -336 & 429 & -254 & -350 & -135 & 396 & 276 & -476 & -386 \\ -388 & -149 & 25 & 131 & 487 & 184 & -378 & 187 & -175 & -305 & 206 & -204 & -372 & 479 & -470 & 151 & 158 \\ 25 & 138 & -158 & -380 & 279 & -494 & -476 & 432 & 130 & 384 & 333 & -419 & -465 & 57 & -449 & 11 & -120 \\ 51 & -243 & 102 & -221 & -83 & -169 & 401 & -279 & -13 & -289 & -152 & -251 & 478 & 491 & -453 & -474 & 72 \\ 183 & 390 & 123 & 477 & -386 & -195 & -470 & 117 & -379 & 413 & 294 & 453 & 268 & 166 & -477 & 302 & -454 \\ 236 & 374 & 149 & -172 & 341 & 381 & -391 & 329 & 325 & 152 & -172 & 53 & 381 & 283 & -376 & -312 & -174 \\ -422 & 283 & -93 & 393 & -368 & 261 & 6 & -216 & 147 & 22 & -360 & -72 & 231 & 405 & 84 & -322 & 37 \\ -205 & -371 & -439 & -424 & -187 & 206 & -210 & 229 & 256 & -192 & -72 & -260 & -313 & 185 & -317 & 415 & -360 \\ -43 & 335 & -106 & -202 & -308 & 393 & 92 & 103 & 432 & -403 & 153 & -260 & -439 & 288 & -123 & 49 & -146 \\ \end{array} } \right)[/math] - en [math]\displaystyle 17 \times 26[/math]-matris som är det enda motexemplet till Grobnir's sats.